

Features

- Compliant with AEC-Q200 Rev-C- Stress Test Qualification for Passive Components in Automotive Applications
- Operating temperature range up to 125 °C

MF-RHT Series - High Temperature PTC Resettable Fuses

- Low thermal derating factor
- Higher hold currents at elevated temperature
- Choice of operating currents
- RoHS compliant* and halogen free**
- Resettable fault protection of general electronic equipment

Electrical Characteristics

Model	V max. Volts		Ihold	l _{trip}	Resis	tance	Max. Time To Trip		Tripped Power Dissipation
			Amperes at 23 °C		Ohms at 23 °C		Amperes at 23 °C	Seconds at 23 °C	Watts at 23 °C
			Hold	Trip	R _{Min.}	R _{1Max.} (Post Trip)		Max.	Тур.
MF-RHT050	30	40	0.5	0.92	0.4800	1.10	2.5	2.5	0.9
MF-RHT070	16	40	0.7	1.4	0.3000	0.80	3.5	4.0	1.4
MF-RHT100	30	40	1.0	1.8	0.1800	0.43	5.0	5.2	1.4
MF-RHT200	16	100	2.0	3.8	0.0450	0.110	12.5	3.0	1.4
MF-RHT200/32	32	50	2.0	3.8	0.0450	0.110	12.5	3.0	1.4
MF-RHT300	16	100	3.0	6.0	0.0330	0.079	15.0	5.0	3.0
MF-RHT400	16	100	4.0	7.5	0.0240	0.060	20.0	5.0	3.3
MF-RHT450	16	100	4.5	7.8	0.0220	0.054	22.5	3.0	3.6
MF-RHT500	16	100	5.0	9.0	0.0175	0.045	25.0	9.0	3.6
MF-RHT550	16	100	5.5	10.0	0.0150	0.037	27.5	6.0	3.5
MF-RHT600	16	100	6.0	10.8	0.0130	0.0215	30.0	5.0	4.1
MF-RHT650	16	100	6.5	12.0	0.0110	0.026	32.5	5.5	4.3
MF-RHT700	16	100	7.0	13.0	0.0100	0.025	35.0	7.0	4.0
MF-RHT750	16	100	7.5	13.1	0.0094	0.022	37.5	7.0	4.5
MF-RHT800	16	100	8.0	15.0	0.0080	0.020	40.0	8.0	4.2
MF-RHT900	16	100	9.0	16.5	0.0074	0.017	45.0	10.0	5.0
MF-RHT1000	16	100	10.0	18.5	0.0062	0.015	50.0	9.0	5.3
MF-RHT1100	16	100	11.0	20.0	0.0055	0.013	55.0	11.0	5.5
MF-RHT1300	16	100	13.0	24.0	0.0041	0.010	60.0	13.0	6.9

Environmental Characteristics

Operating Temperature		
	+85 °C, 1000 hours	+5 % typical resistance change
, , , ,	+85 °C, 85 % R.H. 1000 hours	,
Thermal Shock	MIL-STD-202, Method 107,	±10 % typical resistance change
	+125 °C to -40 °C,10 cycles	
Vibration	MIL-STD-883C, Method 2007.1, Condition A	No change
Moisture Sensitivity Level (MSL)	Level 1	-
ESD Classification - HBM	Class 6	

Test Procedures And Requirements For Model MF-RHT Series

Test	Test Conditions	Accept/Reject Criteria
Visual/Mech	Verify dimensions and materials	Per MF physical description
Resistance	In still air @ 23 °C	Rmin $\leq R \leq R1$ max
Time to Trip	At specified current, Vmax, 23 °C	T \leq max. time to trip (seconds)
	30 min. at Ihold	
Trip Cycle Life	Vmax, Imax, 100 cycles	No arcing or burning
Trip Endurance	Vmax, 48 hours	No arcing or burning
Solderability	MIL-STD-202, Method 208	95 % min. coverage

* RoHS Directive 2015/863, Mar 31, 2015 and Annex.
** Bourns considers a product to be "halogen free" if (a) the Bromine (Br) content is 900 ppm or less; (b) the Chlorine (CI) content is 900 ppm or less; and (c) the total Bromine (Br) and Chlorine (CI) content is 1500 ppm or less.

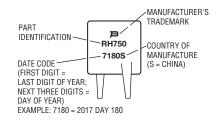
and Chiofine (ci) content is 1300 ppin or ress. Specifications are subject to change without notice. Users should verify actual device performance in their specific applications. The products described herein and this document are subject to specific disclaimers as set forth on the last page of this document, and at <u>www.bourns.com/legal/disclaimer.pdf</u>.

Applications

- Protection of automotive circuitry including engine control modules
- Overcurrent surge protection of electronic equipment required to operate at high operating temperature ranges
- Resettable fault protection of general electronic equipment

MF-RHT Series - High Temperature PTC Resettable Fuses

OURN


Thermal Derating Chart - Ihold (Amps)

Model	Ambient Operating Temperature										
	-40 °C	-20 °C	0 °C	23 °C	40 °C	50 °C	60 °C	70 °C	85 °C	125 °C	
MF-RHT050	0.68	0.62	0.56	0.5	0.44	0.4	0.36	0.34	0.28	0.12	
MF-RHT070	0.95	0.87	0.79	0.7	0.62	0.56	0.51	0.47	0.39	0.17	
MF-RHT100	1.36	1.24	1.13	1.0	0.89	0.80	0.73	0.67	0.56	0.24	
MF-RHT200	2.71	2.49	2.26	2.00	1.77	1.60	1.46	1.34	1.11	0.49	
MF-RHT200/32	2.71	2.49	2.26	2.00	1.77	1.60	1.46	1.34	1.11	0.49	
MF-RHT300	4.07	3.74	3.41	3.00	2.65	2.40	2.21	2.00	1.66	0.74	
MF-RHT400	5.57	5.11	4.65	4.00	3.62	3.29	3.01	2.73	2.27	1.01	
MF-RHT450	6.1	5.6	5.1	4.5	4.0	3.6	3.3	3.0	2.5	1.1	
MF-RHT500	6.78	6.22	5.67	5.0	4.44	4	3.67	3.33	2.78	1.22	
MF-RHT550	7.47	6.86	6.24	5.5	4.85	4.41	4.04	3.66	3.05	1.36	
MF-RHT600	8.20	7.50	6.80	6.0	5.3	4.9	4.4	4	3.3	1.5	
MF-RHT650	8.8	8.1	7.4	6.5	5.7	5.3	4.8	4.3	3.6	1.6	
MF-RHT700	9.51	8.73	7.95	7.0	6.17	5.61	5.15	4.66	3.88	1.73	
MF-RHT750	10.2	9.4	8.6	7.5	6.6	6.1	5.6	5.0	4.1	1.9	
MF-RHT800	10.87	9.98	9.08	8.0	7.06	6.41	5.88	5.33	4.43	1.97	
MF-RHT900	12.21	11.19	10.16	9.0	7.97	7.20	6.56	6.04	5.01	2.19	
MF-RHT1000	13.6	12.5	11.4	10.0	8.8	8.10	7.40	6.60	5.50	2.5	
MF-RHT1100	14.94	13.72	12.49	11.0	9.7	8.82	8.09	7.32	6.09	2.71	
MF-RHT1300	17.7	16.3	14.8	13.0	11.4	10.5	9.6	8.6	7.2	3.3	

How to Order MF - RHT 200/32 -- 14 Multifuse® Product Designator Series RHT = High Temperature Radial Leaded Component Hold Current, Ihold 050 - 1300 (0.50 - 13.00 Amps) Higher Voltage Option Blank = Standard Voltage /32 = 32 Volts Packaging Options — Blank = Bulk Packaging - 2 = Tape & Reel* - AP = Ammo-Pak* Part Number Suffix Option -- 14 = Kinked Leads in Place of Std. Straight Leads - 17 = Straight Leads in Place of Std. Kinked Leads

Typical Part Marking

Represents total content. Layout may vary.

*Packaged per EIA 486-B

Specifications are subject to change without notice.

Users should verify actual device performance in their specific applications. The products described herein and this document are subject to specific disclaimers as set forth on the last page of this document, and at <u>www.bourns.com/legal/disclaimer.pdf</u>.

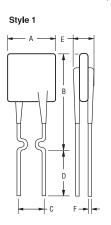
MF-RHT Series - High Temperature PTC Resettable Fuses

BOURNS

Product Dimensions

Model	Α	В	(0	D	E	F	Physical Characteristic		
Model	Max.	Max.	Nom.	Tol. ±	Min.	Max.	Nom.	Style	Material	
MF-RHT050	7.40	12.7	5.1	0.7	7.6	3.0	0.51	0		
WF-RH1050	(0.291)	(0.500)	(0.201)	(0.028)	(0.30)	(0.12)	(0.020)	3	Sn/CuFe	
MF-RHT070	6.86	10.8	5.1	0.7	7.6	3.0	0.51	1	Sn/CuFe	
	(0.27)	(0.425)	(0.201)	(0.028)	(0.30)	(0.12)	(0.020)	1	Sil/Cure	
MF-RHT100	9.70	13.6	5.1	0.7	7.6	3.0	0.51	3	Sn/CuFe	
	(0.382)	(0.535)	(0.201)	(0.028)	(0.30)	(0.12)	(0.020)			
MF-RHT200	9.4	14.0				3.0	0.51	3	Sn/CuFe	
	(0.37)	(0.55)	(0.201)	(0.028)	(0.30)	(0.12)	(0.020)	Ŭ		
MF-RHT200/32	9.4	14.0		0.7	7.6	3.0	0.51	3	Sn/CuFe	
	(0.37)	(0.55)	(0.201)	(0.028)	(0.30)	(0.12)	(0.020)			
MF-RHT300	8.80	13.8	5.1	0.7	7.6	3.0	0.81	2	Sn/Cu	
	(0.35)	(0.55)	(0.201)	(0.028)	(0.30)	(0.12)	(0.032)			
MF-RHT400	10.0	15.0	5.1	0.7	7.6	3.0	0.81	2	Sn/Cu	
	(0.394)	(0.591)	(0.201)	(0.028)	(0.30)	(0.12)	(0.032)	_		
MF-RHT450	10.4	15.6	5.1	0.7	7.6	3.0	0.81	2	Sn/Cu	
	(0.41)	(0.61)	(0.201)	(0.028)	(0.30)	(0.12)	(0.032)			
MF-RHT500	11.2	18.9	5.1	0.7	7.6	3.0	0.81	2	Sn/Cu	
	(0.441)	(0.744)	(0.201)	(0.028)	(0.30)	(0.12)	(0.032)			
MF-RHT550	11.2	18.9	5.1	0.7	7.6	3.0	0.81	2	Sn/Cu	
	(0.441)	(0.744)	(0.201)	(0.028)	(0.30)	(0.12)	(0.032)			
MF-RHT600	$\frac{11.2}{(0.441)}$	$\frac{21.0}{(0.827)}$	<u>5.1</u> (0.201)	<u>0.7</u> (0.028)	<u>7.6</u> (0.30)	<u>3.0</u> (0.12)	$\frac{0.81}{(0.032)}$	2	Sn/Cu	
	· · · · ·					· · · ·				
MF-RHT650	<u>12.7</u> (0.50)	22.2 (0.88)	<u>5.1</u> (0.201)	$\frac{0.7}{(0.028)}$	<u>7.6</u> (0.30)	<u>3.0</u> (0.12)	<u>0.81</u> (0.032)	2	Sn/Cu	
		21.9	5.1	0.7		3.0	0.81			
MF-RHT700	14.0 (0.55)	$\frac{21.9}{(0.862)}$	$\frac{5.1}{(0.201)}$	$\frac{0.7}{(0.028)}$	<u>7.6</u> (0.30)	(0.12)	$\frac{0.81}{(0.032)}$	2	Sn/Cu	
	· · · · ·	· · · /	· · · · · ·	· · · · ·	· · · /	· · · /	· · · · /			
MF-RHT750	14.0 (0.55)	23.5 (0.93)	$\frac{5.1}{(0.201)}$	$\frac{0.7}{(0.028)}$	<u>7.6</u> (0.30)	<u>3.0</u> (0.12)	$\frac{0.81}{(0.032)}$	2	Sn/Cu	
	16.5	22.5	5.1	0.7	7.6	3.0	0.81			
MF-RHT800	(0.65)	(0.88)	$\frac{3.1}{(0.201)}$	$\frac{0.7}{(0.028)}$	(0.30)	(0.12)	$\frac{0.01}{(0.032)}$	2	Sn/Cu	
	16.5	25.7	5.1	0.7	7.6	3.0	0.81			
MF-RHT900	(0.65)	$\frac{23.7}{(1.012)}$	$\frac{3.1}{(0.201)}$	$\frac{0.7}{(0.028)}$	(0.30)	(0.12)	$\frac{0.01}{(0.032)}$	2	Sn/Cu	
MF-RHT1000	17.5	26.7	10.2	0.7	7.6	3.0	0.81			
	$\frac{17.5}{(0.689)}$	(0.51)	$\frac{10.2}{(0.402)}$	$\frac{0.7}{(0.028)}$	(0.30)	(0.12)	$\frac{0.01}{(0.032)}$	2	Sn/Cu	
MF-RHT1100	21.0	26.1	10.2	0.7	7.6	3.0	0.81			
	(0.65)	(0.88)	$\frac{10.2}{(0.402)}$	(0.028)	(0.30)	(0.12)	$\frac{0.01}{(0.032)}$	2	2	2
	23.5	28.7	10.2	0.7	7.6	3.6	1.0			
MF-RHT1300	$\frac{20.0}{(0.925)}$	(1.17)	$\frac{10.2}{(0.402)}$	$\frac{0.7}{(0.028)}$	(0.30)	(0.14)	$\frac{1.0}{(0.040)}$	2	Sn/Cu	

Packaging:


MF-RHT050~MF-RHT800 = 500 pcs. per bag; MF-RHT900~MF-RHT1300 = 250 pcs. per bag BULK: TAPE & REEL: MF-RHT050~MF-RHT400 = 3000 pcs. per reel; MF-RHT450~MF-RHT700 = 1500 pcs. per reel; MF-RHT750~MF-RHT1300 = 1000 pcs. per reel

AMMO-PACK: MF-RHT050~MF-RHT400 = 2000 pcs. per pack; MF-RHT450~MF-RHT900 = 1000 pcs. per pack, MF-RHT1000~MF-RHT1300 = 500 pcs. per pack

F

D

- C

Also available with kinked and straight leads in place of standard leads (see How to Order).

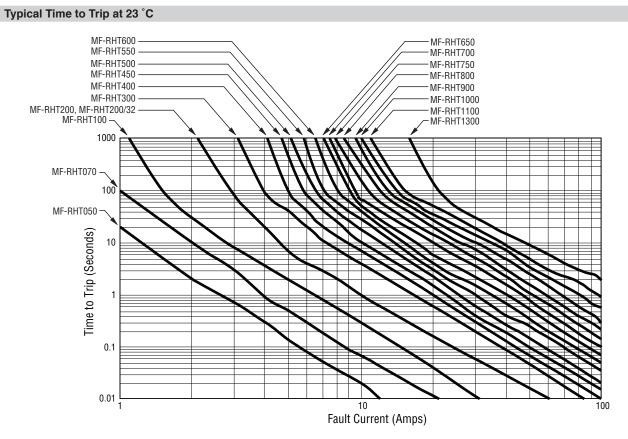
DIMENSIONS:

(INCHES)

0.51 (24AWG)

0.81 (20AWG)

1.0 (18AWG)


Specifications are subject to change without notice.

Users should verify actual device performance in their specific applications.

The products described herein and this document are subject to specific disclaimers as set forth on the last page of this document, and at www.bourns.com/legal/disclaimer.pdf.

MF-RHT Series - High Temperature PTC Resettable Fuses

BOURNS

The Time to Trip curves represent typical performance of a device in a simulated application environment. Actual performance in specific customer applications may differ from these values due to the influence of other variables.

MF-RHT SERIES, REV. M, 11/17

MF-RHT Series Tape and Reel Specifications

BOURNS

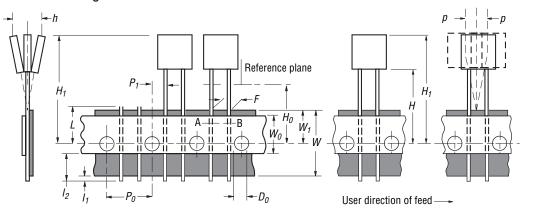
Devices taped using EIA468-B/IEC60286-2 standards. See table below and Figures 1 and 2 for details.

	IEC	EIA	Dimensions		
Dimension Description	Mark	Mark	Dimensions	Tolerance	
Carrier tape width	W	W	<u>18</u> (.709)	<u>-0.5/+1.0</u> (-0.02/+.039)	
Hold down tape width	W ₀	W4	<u>11</u> (.433)	min.	
Hold down tape			No protrusion		
Top distance between tape edges	W2	W ₆	<u>3</u> (.118)	max.	
Sprocket hole position	W ₁	W5	<u>9</u> (.354)	-0.5/+0.75 (-0.02/+0.03)	
Sprocket hole diameter	D ₀	D ₀	4(.157)	<u>±0.2</u> (±.0078)	
Abscissa to plane (straight lead)	Н	Н	<u>18.5</u> (.728)	<u>±3.0</u> (±.118)	
Abscissa to plane (kinked lead)	H ₀	H ₀	<u>16</u> (.63)	<u>±0.5</u> (±.02)	
Abscissa to top: MF-RHT050 ~ MF-RHT450	H ₁	H ₁	<u>32.2</u> (1.268)	max.	
Abscissa to top: MF-RHT500 ~ MF-RHT1300	H ₁	H ₁	<u>45.0</u> (1.837)	max.	
Overall width w/lead protrusion: MF-RHT050 ~ MF-RHT450		C ₁	<u>42.5</u> (1.673)	max.	
Overall width w/lead protrusion: MF-RHT500 ~ MF-RHT1300		C ₁	<u>55.0</u> (2.165)	max.	
Overall width w/o lead protrusion: MF-RHT050 ~ MF-RHT450		C2	<u>42.5</u> (1.673)	max.	
Overall width w/o lead protrusion: MF-RHT500 ~ MF-RHT1300		C2	<u>54.0</u> (2.126)	max.	
Lead protrusion	I ₁	L ₁	<u>1.0</u> (.039)	max.	
Protrusion of cutout	L	L	<u>11</u> (.433)	max.	
Protrusion beyond hold-down tape	I2	I2	Not specified		
Sprocket hole pitch	P ₀	P ₀	12.7 (0.5)	$\frac{\pm 0.3}{(\pm .012)}$	
Pitch tolerance			20 consecutive	<u>±1</u> (±.039)	
Device pitch			25.4 (1.0)	$\frac{\pm 0.6}{(\pm .024)}$	
Tape thickness	t	t	0.9 (.035)	max.	
Tape thickness with splice: MF-RHT050 ~ MF-RHT200		t1	<u>1.5</u> (.059)	max.	
Tape thickness with splice: MF-RHT300 ~ MF-RHT1300		t1	<u>2.3</u> (.091)	max.	
Splice sprocket hole alignment			<u>4.0</u> (.157)	±0.2 (±.008)	
Body lateral deviation	Δ_h	Δ_h	0	<u>±1</u> (±.039)	
Body tape plane deviation	Δ_p	Δ_p	0	$\frac{\pm 0.3}{(\pm .012)}$	
Ordinate to adjacent component lead	P ₁	P ₁	<u>3.81</u> (.015)	<u>±0.07</u> (±.028)	
			()	()	

MM (INCHES) DIMENSIONS:

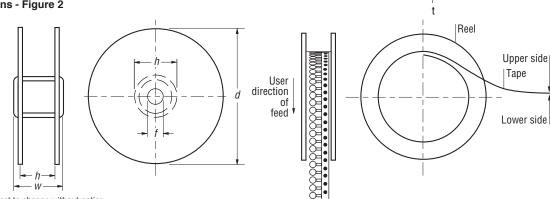
MF-RHT Series Tape and Reel Specifications

BOURNS


MM (INCHES)

DIMENSIONS:

	IEC	EIA	Dimensions		
Dimension Description	Mark	Mark	Dimensions	Tolerance	
Lead spacing: MF-RHT050 ~ MF-RHT900	F	F	5.08 (0.2)	-0.2/+0.8 (-0.006/+0.031)	
ead spacing: MF-RHT1000 ~ MF-RHT1300	F	F	<u>10.2</u> (0.402)	-0.2/+0.8 (-0.006/+0.031)	
Reel width: MF-RHT050 ~ MF-RHT450	W	W2	<u>56</u> (2.20)	max.	
Reel width: MF-RHT500 ~ MF-RHT1300	W	W2	<u>63.5</u> (2.50)	max.	
Reel diameter	d	а	<u>370.0</u> (14.57)	max.	
Space between flanges less device	W ₁	h	4.75 (.187)	$\frac{\pm 3.25}{(\pm .128)}$	
Arbor hole diameter	f	С	<u>26.0</u> (1.02)	<u>±12.0</u> (±.472)	
Core diameter	h	п	<u>80.0</u> (3.15)	max.	
Зох			$\frac{62}{(2.44)} \frac{355}{(14.0)} \frac{345}{(13.12)}$		
Consecutive missing places			3	max.	
Empty places per reel			Not specified		


Taped Component Dimensions - Figure 1

h

Cross section A - B

Reel Dimensions - Figure 2

Specifications are subject to change without notice. Users should verify actual device performance in their specific applications. The products described herein and this document are subject to specific disclaimers as set forth on the last page of this document, and at <u>www.bourns.com/legal/disclaimer.pdf</u>.

Legal Disclaimer Notice

This legal disclaimer applies to purchasers and users of Bourns[®] products manufactured by or on behalf of Bourns, Inc. and its affiliates (collectively, "Bourns").

Unless otherwise expressly indicated in writing, Bourns[®] products and data sheets relating thereto are subject to change without notice. Users should check for and obtain the latest relevant information before placing orders and should verify that such information is current and complete.

The characteristics and parameters of a Bourns[®] product set forth in its data sheet are based on laboratory conditions, and statements regarding the suitability of products for certain types of applications are based on Bourns' knowledge of typical requirements in generic applications. The characteristics and parameters of a Bourns[®] product in a user application may vary from the data sheet characteristics and parameters due to a combination of the Bourns[®] product with other components in the user's application or due to the environment of the user application itself. Such characteristics and parameters also can and do vary in different applications and actual performance may vary over time. Users should always verify actual performance of the Bourns[®] product in their specific devices and applications, and make their own independent judgments about how much additional test margin to design in to compensate for differences between laboratory and real world conditions.

Unless Bourns has explicitly designated an individual Bourns[®] product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949) or a particular qualification (e.g., UL listed or recognized), Bourns is not responsible for any failure of an individual Bourns[®] product to meet requirements of such industry standard or such particular qualification. Users of Bourns[®] products are responsible for ensuring compliance with safety-related requirements and standards applicable to their applications.

Bourns[®] products are not recommended, authorized or intended for use in nuclear, lifesaving, life-critical or life-sustaining applications, nor in any other applications where failure or malfunction may result in personal injury, death, or severe property or environmental damage. Unless expressly and specifically approved in writing by two authorized Bourns representatives on a case-by-case basis, use of any Bourns[®] products in such unauthorized applications is at the user's sole risk. Life-critical applications include devices identified by the U.S. Food and Drug Administration as Class III devices and generally equivalent classifications outside of the United States.

Bourns[®] standard products that are designed and tested for use in automotive applications will be described on the applicable data sheets as compliant with the applicable AEC-Q standard. Unless expressly and specifically approved in writing by two authorized Bourns representatives on a case-by-case basis, use of any other Bourns[®] standard products in an automotive application is not recommended, authorized or intended and will be at the user's sole risk.

Bourns[®] standard products are not tested to comply with United States Federal Aviation Administration standards generally or any other generally equivalent governmental organization standard applicable to products designed or manufactured for use in aircraft or space applications. Bourns[®] standard products that are designed and tested for use in aircraft or space applications will be described on the applicable data sheets as compliant with the RTCA DO-160 standard. Unless expressly and specifically approved in writing by two authorized Bourns representatives on a case-by-case basis, use of any other Bourns[®] standard product in an aircraft or space application is not recommended, authorized or intended and will be at the user's sole risk.

The use and level of testing applicable to Bourns[®] custom products shall be negotiated on a case-by-case basis by Bourns and the user for which such Bourns[®] custom products are specially designed. Absent a written agreement between Bourns and the user regarding the use and level of such testing, the provisions above applicable to Bourns[®] standard products shall also apply to such Bourns[®] custom products.

Users shall not sell, transfer, export or re-export any Bourns[®] products or technology for use in activities which involve the design, development, production, use or stockpiling of nuclear, chemical or biological weapons or missiles, nor shall they use Bourns[®] products or technology in any facility which engages in activities relating to such devices. The foregoing restrictions apply to all uses and applications that violate national or international prohibitions, including embargos or international regulations. Further, Bourns[®] products, technology or technical data may not under any circumstance be exported or re-exported to countries subject to international sanctions or embargoes, and Bourns[®] products may not, without prior authorization from Bourns and/or the U.S. Government, be resold, transferred, or re-exported to any party not eligible to receive U.S. commodities, software, and technical data.

To the maximum extent permitted by applicable law, Bourns disclaims (i) any and all liability arising out of the application or use of any Bourns[®] standard product, (ii) any and all liability, including, without limitation, special, punitive, consequential or incidental damages, and (iii) any and all implied warranties, including implied warranties of fitness for particular purpose, non-infringement and merchantability.

For your convenience, copies of this Legal Disclaimer Notice with German, Spanish, Japanese, Traditional Chinese and Simplified Chinese bilingual versions are available at:

Web Page: http://www.bourns.com/legal/disclaimers-terms-and-policies PDF: http://www.bourns.com/docs/Legal/disclaimer.pdf